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Abstract. This paper describes the design and testing of an axial induction controller implemented on a row of nine turbines 5 

on the Sedini Wind Farm in Sardinia, Italy. This work was performed as part of the EU Horizon 20-20 research project 

CL-Windcon. An engineering wake model, selected for its good fit to historical SCADA data from the site, was used in the 

LongSim code to optimise turbine power reduction setpoints for a large matrix of steady-state wind conditions. The setpoints 

were incorporated into a dynamic control algorithm capable of running on site using available wind condition estimates from 

the turbines. The complete algorithm was tested in dynamic time-domain simulations using LongSim, using a time-varying 10 

wind field generated from historical met mast data from the site. The control algorithm was implemented on site, with the 

wind farm controller toggled on and off at regular intervals to allow the performance with and without the controller to be 

compared in comparable wind conditions. Data was collected from July 2019 until early February 2020. The results have 

been analysed and show a positive increase in energy production resulting from the induction control, in line with LongSim 

model predictions. The measurements also provide a convincing validation of the LongSim model, proving its value for both 15 

steady state setpoint optimisation and time-domain simulation of wind farm performance. 

1 Introduction 

As part of the EU Horizon 20-20 research project CL-Windcon (www.clwindcon.eu) some field test experiments were 

designed and carried out at the Sedini Wind Farm in Sardinia, Italy, in order to test the two main concepts for active wake 

control in wind farms (axial induction and wake steering), and validate the models used in the design process. The control 20 

objective is to increase overall wind farm power production while maintaining or reducing turbine fatigue loads, by 

manipulating the individual turbine controllers to minimise wake interaction effects. Both control concepts involve 

deliberately reducing the power output of some individual turbines in order to achieve a net increase in total production from 

the farm. In the case of axial induction control, turbine power reduction is achieved by increasing the pitch angle and/or 

reducing rotor speed in order to reduce rotor thrust, thus weakening the wake. In wake steering control, the turbine is 25 

deliberately yawed a little out of the wind direction, as this has the effect of changing the downstream path of the wake, 

which can thus be steered away from downstream turbines. This paper specifically reports on the axial induction control 

tests. Further details of all the tests can be found in Kern et al (2019).  
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Section 2 presents an overview of the Sedini wind farm site and the planning of the induction control experiment. The initial 

controller design process is described in Section 3. In Section 4, the use of time-domain simulation modelling to test and 30 

refine the controller is described, while the field tests themselves are described in Section 5, and results are presented. 

2 The Sedini wind farm site 

Details of the Sedini wind farm, planned instrumentation and test campaigns are provided in Schuler et al (2017). The farm 

consists of 43 GE 1.5 turbines laid out as in Figure 1. Most of the turbines are of type GE 1.5s (1.5 MW, 70.5m rotor 

diameter, 65 m hub height), but the seven turbines shown in red are the larger GE 1.5sle (1.5 MW, 77 m rotor diameter, 80 m 35 

hub height). The diagonal row of turbines 13 and 31 – 38 is involved in the experiment described here, and since only wind 

directions blowing along this row from a roughly south-westerly direction are relevant to the experiment, only these nine 

turbines were modelled in the controller design phase. Terrain complexity has been ignored – the site is not completely flat, 

but the topography indicates that with south-westerly wind directions, the effect of the terrain on the wind flow at these nine 

turbines is likely to be relatively small. 40 

The original intention was to carry out both induction and wake steering field tests using this row of turbines. Preliminary 

design work for both sets of tests is documented in Knudsen et al (2019).  However, because of instrumentation issues, only 

the induction control tests were actually carried out, and this paper describes the final controller design and simulation 

testing, and presents results from the field tests which began in July 2019. A separate test of wake steering control was 

carried out by yawing turbines 26 and E5, as described in Kern et al (2019). 45 

Since no loads instrumentation was available on the turbines used for the induction control experiment, the induction control 

is aimed only at increasing the total power production from this row of turbines. The power output of turbines 31 – 37 can be 

modified, and the power output of all nine turbines is monitored. Turbine 38 is used as a reference turbine and wind sensor, 

and it remains in baseline operation. Some additional gain might be expected if turbine 38 were also controlled, but this has 

been sacrificed to ensure that the accuracy of the wind estimation is not affected by any control action. Turbine 13 is not 50 

controlled as there are no turbines in its wake, but clearly its power output will be affected. 

During the field tests, the wake control is switched on and off at regular intervals so that the performance with and without 

control can be compared in similar wind conditions. 

3 Controller design 

The design work was carried out using the LongSim code. This has been developed by DNV GL, and more details can be 55 

found in Bossanyi et al (2018). It is used for the initial steady-state setpoint optimisation, described in Section 3.2, and also 

for the dynamic time-domain simulation testing described in Section 4.  
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Figure 1: Site layout. Induction control field test involves turbines 13 and 31-38, with winds from the south-west. The set-point 60 
optimisation maximises the total power from these nine turbines. Controlled turbines are in dark green. Turbine 38 is used as the 

reference from which wind conditions are calculated. Turbine 13 is affected but not controlled, as its wake does not affect other 

turbines. 

3.1 Wake modelling 

To allow rapid calculations and design iterations, LongSim does not use high-fidelity flow modelling, but makes use of fast 65 

engineering wake models embedded in an ambient flow field. A choice of different engineering models is available, and for 

the preliminary design reported in Knudsen et al (2019), several different wake models were used to investigate the 

sensitivity of the wake control performance to the wake model details, and it was clear that the wake model can make a big 

difference to the results. In this section, historical SCADA data from Sedini is used to help in the selection of a single wake 

model to be used in the final controller design. 70 

 SCADA data recorded from 01/05/2018 to 05/03/2019 was processed to extract the 10-minute average power output for 

each of the nine turbines, and the ratio of power at each turbine #13 and #31-#37 to the power of the reference turbine #38 

was plotted as a function of wind direction. The power ratio for any turbine showed a clear dip for any wind directions where 
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the turbine was affected by a wake. For each turbine, the power ratios were binned in 5º bins and the mean and median ratio 

in each bin was calculated. The median was found to be more useful than the mean, as it avoids big spikes caused by outliers 75 

in the data (see Figure 4a for example). Each candidate wake model was used to calculate a predicted power ratio for the 

direction corresponding to the middle of each bin (see Figure 4), and the RMS errors between the median and the predicted 

values were summed over the direction bins and then over all the turbines #13 and #31-#37 to give a measure of the 

goodness of fit for this wake model (see Figure 3). All the wake models are implemented within the LongSim code, which 

was used to generate the results presented here. 80 

A range of different wake models was compared in this way, including the EPFL model of Bastankhah and Porté-Agel 

(2016) and several variants of the model of Ainslie (1988). The EPFL model includes a number of parameters which many 

researchers have subsequently used as tuning parameters, adjusted to fit particular datasets, as has also been done within the 

CL-Windcon project (for example, the model was calibrated against wind tunnel measurements in Raach et al, 2018). Here, 

only the original parameters specified in Bastankhah and Porté-Agel (2016) were used and no attempt was made to tune 85 

them. It is likely in any case that different parameters would work best for different conditions of, for example, atmospheric 

stability, so it is more useful if a general model can be found which does not rely on such tuning. The Ainslie model is 

treated as such a general model, in that the parameters defining the wake deficit profile and its downstream expansion are 

considered fixed, but a number of variations are still possible. In particular, the following variations of the basic Ainslie 

model were investigated here: 90 

• Choice of wake-added turbulence model: either the Crespo-Hernández model as assumed in the EPFL model, or the 

Quarton-Ainslie model as used, for example, by WindFarmer (DNVGL, 2014), 

• Choice of wake superposition models: the dominant wake model in combination with ‘large wind farm’ corrections as in 

WindFarmer (DNVGL, 2014), or the sum-of-absolute-deficits model as in Ruisi and Bossanyi (2019), 

• Accounting explicitly for hub height in the modelling of the eddy viscosity parameter (the original model only uses the 95 

rotor diameter), 

• More precise calculation of centreline deficit, using momentum conservation to avoid having to integrate over a 

radially-discretised flow (Anderson, 2019), 

• Wake smearing to account for the effect of wake meandering over the averaging time as in Bossanyi et al (2018), 

• Modification of the eddy viscosity term to account for atmospheric stability as in Ruisi and Bossanyi (2019). 100 

In respect of the last point, met mast data from the site was analysed to estimate the bulk Richardson number, and hence to 

identify diurnal variations in the wind conditions driven by predominant unstable and stable conditions during the daytime 

and night-time hours, respectively. A summary of the atmospheric stability conditions by time of day at the site is shown in 
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Figure 2. Given this information, the recently-developed stability-dependent eddy-viscosity model of Ruisi and Bossanyi 

(2019) was used, allowing the effect of atmospheric stability to be directly accounted for. The SCADA data was split into 105 

three different classes based on the time of day: daytime (hours 7 – 17), night-time (hours 18 – 06), and overall. In the 

daytime the atmosphere is generally unstable, with an average historical Obukhov length of -255m, while the night-time 

period is generally stable, with an average historical Obukhov length of 237m. The overall average Obukhov length was 

850m. 

 110 

Figure 2: Diurnal distribution of atmospheric stability conditions, classified into three categories based on the Bulk Richardson 

number estimated from the site mast at the Sedini Wind Farm site. 

The comparison of wake models in terms of overall RMS error is shown in Figure 3. The model selected for the final design 

is the one labelled “AinslieMOL_QA_Exact”, which has the lowest overall error for both daytime and night-time periods, 

and nearly the lowest overall. This is the stability-dependent variant of the Ainslie model (Ruisi and Bossanyi, 2019), 115 

together with Quarton-Ainslie added turbulence, sum-of-absolute-deficits superposition, explicit hub height, and the more 

precise centreline deficit calculation (these options are described above). Several other variants of the Ainslie model are 

almost as good, but they only differ from one another in subtle points of detail. Using the selected model with the Obukhov 

length for averaged-neutral conditions, the fit against the SCADA data is shown in Figure 4 for each of the turbines. 
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 120 

Figure 3: Overall comparison of different wake models. 
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Figure 4: Selected model (blue) compared to SCADA data (black, with bin means shown dashed red and medians 

solid red). The vertical blue line shows the direction of the turbine just upstream. 

3.2 Steady-state setpoint optimisation 

Since the selected wake model includes a dependence on atmospheric stability, it would be possible to calculate optimal 130 

setpoints for different Obukhov lengths, and to use a measurement of the Obukhov length to modify the setpoints in real 

time, as will already be done for wind speed, direction and turbulence intensity. However, for the purposes of the Sedini 

experiment this would not be possible to arrange, and so the setpoints were calculated using the average Obukhov length of 

850m derived from the historical data, representing near-neutral conditions. A further improvement to the results would have 

been likely if it had been possible to use measured stability as a lookup table input. 135 

Using this wake model, the steady-state optimiser in LongSim was then used to generate tables of optimised power setpoints 

for each controlled turbine, i.e. #31 to #37. The merit function for optimisation was the total power from all 9 turbines, i.e. 

also including #38 and #13. Setpoints were calculated for wind speeds from 6 to 15 m/s in 1m/s steps, directions from 200 to 

270 degrees in 2-degree steps, and turbulence intensities of 9, 13 and 17%. The speed and direction ranges in the tables were 

extended to 3-18 m/s and 180-270 degrees by padding with null setpoints (i.e. no power reduction). The final look-up table 140 

(LUT) consists of setpoints as a function of wind speed, direction, turbulence intensity and turbine number. 

The following sections describe how the resulting LUT was converted into a practically realisable control algorithm. 
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3.3 Measurement of the wind condition 

For practical application, the controller needs to have an estimate of wind speed, wind direction and turbulence intensity at 

each time step so that it can obtain the appropriate setpoints from the LUT. Since the setpoints are optimised on the 145 

assumption that the (undisturbed) wind condition is the same throughout the wind farm, wind condition estimates should be 

representative of the whole farm. In general, a met mast could be used if one is available, but more than one mast would be 

needed to cover different wind directions, so it would usually be better to use estimates from the turbine controllers. Each 

turbine controller can provide a direction estimate by filtering its nacelle position signal plus the wind vane misalignment, as 

long as suitably calibrated measurements are available. The turbine controller can usually provide a wind speed estimate, and 150 

if a separate turbulence intensity estimate is not available it can be obtained from the wind speed estimate standard deviation 

with appropriate calibration factors. The wind farm controller could then use the average or the median of the wind 

conditions estimates from all turbines which are currently unwaked, and use this to represent the whole farm. A low-pass 

filter can be applied with a variable time constant of the order of the time taken for a wind condition measured at the 

upstream edge of the farm to propagate to the middle of the farm. This introduces an appropriate delay as well as some 155 

smoothing. 

For the specific row of turbines used at Sedini, the following approach was used. The upstream turbine, #38, is always 

unwaked in wind directions of interest and is used to estimate the wind speed and turbulence intensity, which is then used for 

the LUT as if it represents the whole row of turbines. The wind direction for the LUT is as taken as the median of the 

individual wind direction estimates provided by all nine turbines in the row. This assumes that wake effects do not change 160 

the local wind direction, which is more likely to be true for induction control than for wake steering cases. 

The inflow wind speed is an estimate of the rotor averaged wind speed based on 1Hz operational data of turbine #38. The 

individual wind direction estimates are derived from the nacelle position sensor and the nacelle vane signals. Prior to starting 

the test, the nacelle position sensors signals had been calibrated using the preceding 3 months of SCADA data. The 

calibration process was designed such that the resulting wind direction estimates comply with the assumption that the time 165 

averaged wake velocity deficits propagate with the mean wind direction. An online algorithm ensures that the calibration of 

the nacelle position sensors is maintained over time in case irregularities occur.  

The turbulence intensity is derived from the standard deviation of the estimated wind speed, with a correction factor applied 

which has been derived by comparing the standard deviation calculated in the same way at a turbine close to the met mast 

against the standard deviation actually measured at the mast. 170 

The estimated wind speed and direction signals are 60s averages, while the turbulence intensities are instantaneous values 

from a running 10-minute estimation. 
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If turbine #38 is not running, the test continues using wind estimates from #37. If neither of those turbines is working, #36 is 

used. If all three turbines are not running, no wind farm control is applied. However, it should be noted that the optimal 

setpoints are only valid if all nine turbines are working. Cases with some turbines not working were not tested in simulation, 175 

and in the analysis of the field test results, data was discarded if not all turbines were working. 

3.4 Accounting for wind condition uncertainty 

The power reduction setpoints are optimised using steady-state calculations for specific ambient wind conditions which are 

assumed to apply over the whole wind farm. In the practical application, the wind condition used for the LUT to calculate 

setpoints at any specific time are not precisely known, partly because of uncertainties in whatever measurements are actually 180 

used for this, and partly because the wind conditions may not be the same everywhere across the wind farm. The setpoint 

optimisation can already take account of such uncertainties by assuming probability distributions rather than fixed values for 

the wind speed, direction and turbulence intensity used for each optimisation. This results in lookup tables which are 

smoothed out by those probability distributions, but the time needed for the optimisations greatly increases. Here an 

alternative approach is used, in which the LUT calculated for precise wind conditions is smoothed out subsequently, with 185 

each value replaced by a weighted average of nearby values, the weightings being determined by those assumed probability 

distributions. This has the advantage of faster optimisation, but also means that in principle the smoothing can be changed in 

real time according to the perceived uncertainties in wind conditions at the time. 

For the field tests, this post-hoc smoothing was carried out using fixed assumptions about the uncertainties, namely that the 

wind speed and direction have Gaussian distributions with standard deviations of 1m/s and 5º respectively. Because of the 190 

smaller dependence of the setpoints on turbulence intensity, no smoothing was applied for turbulence intensity. Prior to field 

testing, the smoothing assumptions were tested in simulation as described below. 

3.5 Final control algorithm design 

The final control algorithm updates the setpoints on a timestep of 60 seconds. At every timestep, the wind condition, 

estimated as described in Section 3.3, is used to generate a setpoint for each turbine using the setpoint LUT which has been 195 

smoothed as described in Section 3.4. The power reduction setpoints are then sent directly to the turbine controllers. 

For the purposes of the field test, the controller is toggled on and off every 35 minutes. This toggle frequency was selected 

on the basis that the wind advection time along the row from #38 to #13 will be of the order of 2 – 5 minutes in the wind 

speed range of interest, and a further 30 minutes before switching should be enough time to get a representative result, and 

the toggling should be frequent enough to obtain periods with similar wind conditions in both toggle states. Choosing 35 200 

minutes also ensures that switching does not occur at exactly the same time every day, which could introduce a bias due to 

interaction with diurnal changes in wind conditions. Data from the field tests was recorded at 1-minute intervals. 
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The final algorithm was tested in dynamic time-domain simulations as described in Section 4, before being implemented in 

the field. Section 5 describes the field test and presents an analysis of the results. 

4 Simulation testing 205 

Before the wind farm control was implemented in the field, dynamic simulations were run with LongSim to try to mimic the 

behaviour of the wind farm as closely as possible in realistic time-varying wind conditions, and to assess the likely 

performance of the wind farm control. 

The simulations used a correlated stochastic wind field covering the turbines, generated by LongSim starting from historical 

data measured at the Sedini met mast, thus ensuring that at least the lower-frequency wind variations are appropriate for the 210 

site. The simulation results provided time histories of wind conditions, setpoints and power outputs at each of the turbines. 

Simulations were run with and without wind farm control, and also with the control toggling on and off every 35 minutes as 

would be done in the field. 

4.1 Wind field 

The technique for generating the correlated ambient wind field has been described in Bossanyi et al (2018). The 10-minute 215 

average historical met mast data was inspected, and a period selected where the wind speeds and directions were varying 

over a range suitable for exercising the wind farm control. This time history was assumed to apply at a point in the middle of 

the row of turbines, and higher-frequency synthetic turbulence was added at that point, and also at a grid of points covering 

all the turbines, using assumed coherence properties, so that variations across the wind farm are realistically correlated, 

spatially and in time. LongSim’s default settings were used for the spectral and coherence properties of the wind. 220 

The wind field was modified by wind shear appropriate for the site, modelled with a shear exponent of 0.143, and the air 

density was taken as 1.177 kg/m3. 

4.2 Turbine model 

Although a detailed model of the turbine was not provided, LongSim has the option to model the turbine using power and 

thrust curves as a function of wind speed, which is sufficient for a basic evaluation. Power and thrust curves were provided 225 

covering the allowed range of power reduction setpoints. LongSim also models supervisory control, and in this case the yaw 

control algorithm provided by GE was implemented, to ensure a realistic response to changing wind directions. Figure 5 

illustrates the resulting yaw response during a short example simulation. 
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Figure 5: Typical simulated yaw control response. 230 

The turbine was modelled with a 10-second first-order lag for implementation of the power reduction setpoint. This is an 

approximation to the actual behaviour; details of this were not provided, save that in lower winds the thrust reduction relies 

on a change in rotor speed, which might take a few seconds, but in higher winds only a change in blade pitch is needed, 

which is faster. Simulation results confirmed that a lag of this order has only a very small effect on the induction control 

performance. 235 

4.3 Wake model 

The wake model selected as described in Section 3.1 was used for the simulations. As these are dynamic simulations, 

assumptions also need to be made concerning the dynamic wake response. LongSim’s default assumptions were used for the 

wake advection speed, namely that the advection speed is the average of the ambient speed and the speed integrated over the 

wake. Wake meandering was driven by the low-frequency lateral and vertical components of the wind field up to a 240 

wavenumber corresponding to two turbine diameters. The resulting wakes are simply embedded into the ambient wind field, 

which is assumed not to be otherwise affected by the presence of the turbines. 

4.4 Induction control algorithm 

The wind farm control algorithm used the same LUT as was subsequently implemented on site. Simulations were run first 

with the raw LUT, and then with the LUT corrected for wind condition uncertainties as described in Section 3.4, firstly just 245 

with 5º direction uncertainty and then with a further uncertainty of 1 m/s in wind speed. 

The wind conditions for the LUT were calculated as in the site implementation, i.e. using turbine #38 for wind speed and 

turbulence intensity and all nine turbines for direction, but ignoring any inaccuracy in the estimations, i.e. taking the actual 

simulated rotor-average wind speed and direction and turbulence intensity as if they were the measured values. The values 

were low-pass-filtered using a first-order filter with a time constant of 60s to represent approximately the way in which these 250 

signals would be derived in the field. Further filtering could be done, for example to help represent advection of the wind 
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conditions along the line of turbines, but a systematic study was not conducted as this option was not available in the farm 

control software implemented in the field. 

4.5 Simulation results with setpoint smoothing 

Site met mast data with suitable wind conditions for a period of just over 5 hours was selected, and used to generate a wind 255 

field covering the 9-turbine row. The simulation wind conditions are illustrated in Figure 6. 

 

 

 
Figure 6: Wind conditions for the initial simulations. The black line represents the smoothed 10-minute mast data which is 260 

assumed to apply at a point halfway down the row of turbines. The red line shows conditions from the simulated wind field at the 

turbine #38 rotor. 
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Using this wind field, four simulations were carried out: 

• Base case, without induction control 

• Induction control, using the raw optimised setpoints 265 

• Induction control, with the setpoint table smoothed to account for a 5º uncertainty in wind direction 

• Induction control, with the setpoint table smoothed to account for uncertainties of 5º in wind direction and 1m/s in wind 

speed 

Figure 7 shows how the setpoint variation becomes much smoother, using the first controlled turbine (#37) as an example. 

The effect on the total power production from the nine turbines, shown in Figure 8, is difficult to discern in the plot, so the 270 

mean values are given in Table 1. As well as giving smoother control action, it is clear that smoothing to account for wind 

uncertainties, especially wind direction, increases the power gain achieved by induction control. This smoothing was 

therefore adopted for the LUT used in the field tests. More simulations could be run to optimise the amount of smoothing, 

but this was not considered worthwhile at this stage. 

 275 
Figure 7: Effect of LUT smoothing on induction control setpoints (turbine #37 illustrated). For the base case, the setpoint is zero. 

 
Figure 8: Effect of LUT smoothing on total power output 
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Case Power [MW] Increase [%] 

Base case 3.7058 0 

Raw LUT 3.7613 1.50% 

Direction smoothing 5º 3.7641 1.57% 

Final smoothing (5º, 1m/s) 3.7645 1.58% 
Table 1: Mean power values from Figure 8 280 

 
Figure 9: Wind conditions for the toggling simulations. The red line represents the smoothed 10-minute mast data 

which is assumed to apply at a point halfway down the row of turbines. The black line shows conditions from the 285 

simulated wind field at the turbine #38 rotor. 
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4.6 Simulation of controller toggling 

As a final test prior to the start of field testing, a longer simulation was run using a different sample of met mast data to 

generate the wind field, this time 22.5 hours in length, shown in Figure 9. 

Three simulation were run using this wind field: 290 

• Base case, without induction control 

• Induction control with the final smoothed LUT 

• Induction control toggling on and off every 35 minutes, as for the field tests 

Figure 10 shows the power reduction setpoint at the first controlled turbine (#37), demonstrating the toggling effect in the 

third simulation. 295 

The total power for the nine turbines is shown in Figure 11 for all three simulations. The difference is difficult to discern in 

the plot, so the mean values are given in Table 2. For this period, the induction control increases the power output by 1.3%, 

and if toggling on and off, this increase is halved, as would be expected. 

 
Figure 10: Induction control setpoints showing controller toggling (turbine #37 illustrated) 300 

 

Figure 11: Total power output for the toggle test simulations 
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Case Power [MW] Increase [%] 

Base case 3.496 0 

Induction control 3.541 1.29% 

Induction control toggled on and off 3.519 0.65% 

Table 2: Mean power values from Figure 11 

5 Field testing 305 

The induction control test was initiated on site and data recording started on 11th July 2019. The following day, an offset 

applied to the wind direction used for the LUT, obtained empirically by matching measured directions to the directions 

where maximum wake deficits were observed, was corrected, so valid SCADA data was available from 10:50 on 12th July 

onwards. The SCADA data was recorded with a one-minute sampling frequency, and provided in a Matlab datafile. The file 

was updated periodically to include the latest data, which was analysed as described below. Some apparent inconsistencies 310 

were checked by running simulations with LongSim using wind fields created from the actual Turbine #38 SCADA data, 

and with setpoints toggled according to a flag recorded in the SCADA data, to try to mimic as closely as possible what was 

happening in the field. Comparison of simulated and measured results for all the turbines proved extremely useful, and 

revealed some interesting inconsistencies. For example, Figure 12 compares the simulated and measured power at turbines 

#34 and #33 during a 17-hour period. The power is very well predicted for #33, and similarly for all the other turbines except 315 

for #34: it is clear that this turbine was running in a curtailed mode. Unfortunately, the status flags in the recorded SCADA 

data did not include any indicator of curtailment. 

 

Figure 12: Measured and simulated power at turbines #34 and #33 
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These simulations also proved to be a valuable tool for verifying the correct implementation of the setpoint changes in the 320 

field, as the simulated and measured setpoints for any turbine should match fairly closely through the period of the 

simulation. Figure 13, for example, shows an excellent match, even with the small setpoint values in this example, and any 

significant discrepancies could be easily identified. 

 

Figure 13: Measured and simulated setpoints at turbine #34 325 

5.1 Analysis of field test data 

The final dataset consisted of more than 6 months of SCADA data for the nine turbines at 1-minute resolution (298066 

records). This was run through an analysis program which carried out the following steps: 
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range 180 – 270 degrees, as no setpoints were applied outside of this range. This left 21965 relevant records. Records 335 

with high or low turbulence intensity were not filtered out, because the setpoints continued to be applied even if the 

turbulence was out of the range for which they were designed. Finally, records where one or more turbines were not in 

normal operation were also discarded, leaving 12498 records, or just over 4% of the original data. For the sake of the 

subsequent processing steps, rather than actually discarding any records, the filtering was done by assigning a logical 

flag to each of the 1-minute records to say whether or not that record is accepted. 340 
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2. The data is parsed to find the moments at which the toggle flag changes. The 5 minutes following the toggle change are 

discarded as ‘settling time’, and following this, 10-minute chunks are collected up to the next toggle change. Since the 

toggle interval is 35 minutes, there should be three such 10-minute chunks in each toggle period. However, the realities 

of real life mean that this is not always exactly true, so a 10-minute chunk is kept as long as its apparent length defined 

by the recorded start and end time is within 30 seconds of 10 minutes. 345 

3. For each 10-minute chunk, the mean value of the filter flag is calculated, and the chunk is accepted if this is greater 

than 0.9 (i.e. at least 90% of the points within it are accepted). For each such chunk, the mean power (summed over 

turbines) is calculated, as well as the mean lookup table wind speed, wind direction and turbulence intensity, and also 

the mean toggle state (control ‘ON’ or ‘OFF’). The mean normalised power is also calculated, defined as the total 

power from the 9 turbines divided by the power at the reference turbine #38. Each chunk is classified as having control 350 

‘ON’ if the mean toggle state is greater than 0.9, or ‘OFF’ if less than 0.1 (these criteria are only needed to cope with 

occasional irregularities in the data). 

4. The 10-minute ‘ON’ and ‘OFF’ chunks are then binned according to wind conditions. 

5.2 Field test results 

The top left graph in Figure 14 shows the mean ‘ON’ and ‘OFF’ power in each wind speed bin. The crosses show the 355 

standard deviations of the points in the bin, and the bar chart below shows the number of ‘ON’ and ‘OFF’ points in each bin. 

There appears to be a consistent increase over the wind speed range of interest, apart from the 6-7 m/s bin, although it should 

be noted that the increase is generally smaller than the standard deviation of the points, so it would clearly be desirable to 

have a lot more datapoints to give more confidence in the results. The highest wind speed bin does not have enough points to 

be meaningful. Note also that at the lowest wind speeds, some heavily waked turbines may not be producing any power, and 360 

in that situation, the thrust coefficient depends on the supervisory control – a turbine generating no power might continue to 

rotate at minimum operating speed, or it might slow down to an idling speed, probably depending on how long the power 

remains low. No information was provided about this, so the setpoint optimisations assumed an intermediate thrust 

coefficient of 0.3 for any turbine producing zero power. This represents a source of uncertainty at the lowest wind speeds. 

The ‘unweighted increase’ figure simply represents the increase in the sum of the mean powers in all bins containing at least 365 

two ‘ON’ and two ‘OFF’ points, i.e. excluding the highest bin in this case. 

The right hand side of Figure 14 shows the points binned against wind direction. Since the points in any bin might all have 

significantly different wind speeds, it makes sense to plot the mean normalised power as defined above, rather than the mean 

absolute power. Again, as there are not very many points per bin, the increase is smaller than the standard deviations, but the 

increase is consistent. The unweighted increase is calculated as before – in this case all bins have enough points to be 370 

included. One would expect the two unweighted increase figures to converge once there are enough points in all the bins, 

since they represent the same set of datapoints. 
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 375 

Figure 14: Field test results binned on wind speed and direction 
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 390 

 Figure 15: Power ratio binned on wind speed and direction 

  

Figure 16: Numbers of points in each bin 
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So far, no account has been taken of turbulence intensity in the data analysis. In Figure 17, the mean turbulence intensity for 

the ON and OFF points in each of the bins is shown. The induction control was designed for turbulence intensities up to 395 

17%, but it is clear that higher turbulence intensities were experienced during most of the measurement period. The 

induction control is expected to be less effective in higher turbulence intensities, due to faster wake dissipation. 

 

Figure 17: Mean turbulence intensities in each bin 
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Apart from these differences in specific bins, and bearing in mind the small numbers of measured points in most bins, the 

general pattern of results over most of the bins indicates a quite encouraging comparison between modelled and measured 415 

results. 

 

Figure 18: Ratio of model predictions of power in each bin 
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Figure 19: SCADA wind speed, direction and turbulence intensity used for simulation 430 

  
Figure 20: Measured and predicted power at turbines #38, #37, #36 and #13 
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Figure 20 shows the power production at the first three turbines, and also the last turbine. The power at turbine #38 is very 

well predicted. At turbine #37, it appears that the turbine must have been switched off for about the first 3.5 hours, but the 435 

agreement after that is very good. At the next turbine, #36, the measured power is higher than predicted by LongSim for the 

first 3.5 hours, presumably due to the fact that while #37 was not generating, it was not waking #36, whereas the simulation 

was not aware of the curtailment. After #37 started generating, the agreement is again very good. There is good agreement 

for the other turbines too, even at turbine #13 as shown, suggesting that wake effects are well predicted all along the row. 

Figure 21 shows the toggling power reduction setpoints at the first four controlled turbines. With the usual exception of the 440 

first 3.5 hours for turbine #37 when it was curtailed, the agreement is again very good. This is equally true for the three other 

controlled turbines, not shown. 

  

  

Figure 21: Measured and predicted setpoints at turbines #37, #36, #35 and #34 445 
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Conclusions 

As part of the EU Horizon 20-20 research project CL-Windcon, a field test of an axial induction controller for a row of nine 

turbines at Sedini wind farm in Sardinia, Italy was carried out. The aim of the controller was to reduce some individual 

turbine setpoints as a function of wind conditions, so as to reduce wake losses and increase the overall power output from the 

whole row. Historical data from the site was first used to confirm a choice of wake model, and the optimiser of the LongSim 450 

model was then used to generate turbine setpoint lookup tables as a function of wind speed, direction and turbulence 

intensity which would maximise the power output from the row. The tables were then incorporated into a practically 

realisable control algorithm, which makes use of available measurements to estimate the wind conditions and takes account 

of wind speed and direction uncertainties. Using wind inputs derived from historical site data, dynamic time-domain 

simulations were performed in LongSim to verify the design choices and predict the likely dynamic performance. 455 

The algorithm was then implemented in the field, and data was collected for over six months, with the control action 

toggling on and off at regular intervals so that the effect of the controller could be assessed. Because of the low occurrence 

of the appropriate wind conditions, and after filtering out any invalid records, there were eventually about 200 hours of 

useful data, from which about 570 ten-minute periods could be extracted, covering a range of wind conditions. This was 

sufficient to demonstrate a reasonably consistent improvement in power production of the order of a few per cent in the 460 

relevant range of wind conditions, although the number of datapoints is too small to be able to quantify the improvement 

precisely in a statistically meaningful way. The measured data was also used for validation of the LongSim software, 

demonstrating excellent agreement and confirming the suitability of LongSim as a valuable tool for designing and testing 

wind farm controllers. 
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